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Summary: Kantorovich gave an upper bound to

1

(x'Vx) (x'V " x) where x is an n-vector of unit length

and V is an nxn positive definite matrix. DBloomfield, !
Watson and Knott found the bound to |X'VXX'V'ix|,

and Khatri and Rao to the trace and determinant of

1

X'VYY'VT X where X and Y are nxk matrices such

that X'X = Y'Y = I. 1In the prescnt paper we establish |
bounds for traces and determinants of X'VYY'v™!x and (

X'BYY'CX when X and Y are matrices of different orders.

TN

A review of previous results on generalizations of Kantor- x

ovich inequality and a number of new results of independent

5o i et s,

interest are also given. :
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. 1. INTRODUCTION

Let V be an n>n positive definite matrix with

eigen values Al > AZ 2 .02 An > 0, and define

2
Wy = (Ai + An+i-1) /4 Ay An+i-1’ i=1,...,a(< n/2).
Kantorovich (1948) established the inequality

1< (x'va) (x' vVia/(x'0? <o (1.1)

for all non-null vectors x. A n;tural generalization of
(1.1) is to compare the matrices A= (X'X)"IX'VX(X'X)"IO
and B = (X'V"lx)"1 when X varies over n“k matrices
of rank k. Let 0,,...,0, be the roots of |A -0B| = 0,
i.e., the eigen values of A with respect to B, It is
easy to establish that 6, > 1 for all i. Bloomfield

i
and Watson (1975) and Knott (1975) showed that

min(k,n-k)

proeeafy € i w, (1.2)

|aB~l| =0 .
i=1

while Khatri and Rao (1980) established that

tr(AB'l)a 61+...+6 < w, ¥, ..+ if n>2Kk

k -1 k -

.<.‘”1+"‘+“’n-—k +(2k-n), if n<2k (1.3)

where trC represents the trace of matrix C. It may be
noted that 16, = tr P, VP V'l where P is the pro-

i X X h.¢
jection operator on the column space of X. Bloomfield and

Watson (1975) gave another inequality

- -
s ariatened L Fea S AR AR B
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- k
1 2
tr pr(I‘Px)ViZ§ (A=A q41) (1.4)

when n > 2k. The inequalities (1.2) - (1.4) are useful
in comparing the efficiencies of simple least squares
estimators with the minimum variance unbiased estimators
of parameters in the Gauss-Markoff model (see Khatri and
Rao, 1980).

Khatri (1978, 1980) considered the matrix (I—IBA'l)
which arises in a different context and proved the follow-
ing results. Let g = (11,1

of (1,2,...,n) and P denote the class of all permutations

2,...,in) be a permutation

of (1,2,...,n). Further, let

2 2
£ = (A -2 )Ty + A ) (1.5)
3(“) ia Lpeat f 1, Yn-atl

for a = 1,2,...,k with n > 2k. Then

min(k,n-k) minCk, n-k) (x,—xn_m)z
2’
j=1 (A _y)

(1.6)

sup

n £ =
}‘eP axl i(o)

l1-BA™Y

1

tr (I-BA™Y) < ?“f,’, 7,1 Ei(q) If n22Kk, (1.7)

-1_ inf %

1 -1
) ]t
~ ieP asl E(u)

tr (I-BA” if n>2k, (1.8)

Khatri (1978) further showed that if

c=x'vy(y'vyyiy'vxx'vx)™? (1.9)

FRNPPE
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i .where Y 'is ap nxs, (s<n-k), matrix.such that X'y = 0,

then

1

lcl < 1Qf, tr C<trQ, and tr C~ > tr Q! (1.10)

where Q = 1-BA"L FRaton (1976) established the results

(1.6) and (1.10) when k=g=l,
Strang (1960) generalized the Kantorovich inequality
(1.1) in the form |

]

[Cx'Ay) (y'8471%) / (x'%) (v'9)] < wy (1.11)

for all non-null vectors x and y where A 1is an nxn
nonsingular matrix with singular values 6> 6,>...28,> 0

and
2
wy = (51 + 6n-1+1) /4 61 6n~j+1‘ (1.12)

Greub and Rheinboldt {1959) proved that

' 2 ] 2
(x G"x) (x " x» ) (A1u1+knun)

(x'GHx)2 T4

(1.13)
lkn“lnn
for all non-null vectors x, when G and H are positive
definite commuting matrices with eigen values X >Ap>...2) >C
and 4y 2Hp2...2, 30 respectively. The result (1.13) can be
proved using (1.11).

A natural generalization of tuc cxpression in (1.11)

is of the form

et B o SRR e, T R SR T IO rr T  ,




g(X,Y) = | X'AP AT X /| X' X|

£(X,Y) = tr (prpYA‘l) (1.15)

where X and Y are (nxk) and ( nxs) matrices

of ranks k and s respectively with s>k, and A

is an nxn non-singular matrix with singular values

§,28,>...28 0. When s=k, Khatri and Rao (1980)
established the inequalities

min(k,n-k)
(1.16)

g(X,Y) < m wy
i=1

N
£
ote
b
oy
=
v
N
-3

£(X,Y) <

n-k °
121 mi+2k—n if n<2k (1.17)

A

where mi are as defined in . (1.12). 1In the next section

we establish the bounds for (1.14) and (1.15) when 8 1is

not necessarily equal to K.

We also consider determinants and traces of matrices

‘

of the type

X'’y (v'erv Ty n?x) (x'cux)”? (1.18)

which are natural extensions of the expression in (1.13)

and establish bounds under very general conditions on

X, Y, G and H.
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2. THE MAIN THIOREMS

In all the theorems stated in this section, X and
Y stand for nxk and nxs matrices of ranks k and s
.reapectively- with s>k and Pz stands for the projection
operator on the column space of matrix 7.

Theorem 1. Let §,>§,>...>6,>0 be the singular values of

B
an nxn nonsingular matrix A, a‘nd

2
(8 + 8, i41)

w, = , i=1,...,m(<n/2). (2.1)
4, 08 -
i "n-i+l
Then
| X'AI’Y A~tx |  min(k,n-8)
< n 0, (2.2)
| X'X | i=1
and
-1 k
tr (PyAPy A™") < ] w, if n>s+k
i=1
n-g
< ) w, + (stk-n) if n<s+k (2.3)
i1

Note 1. If X, and Y] are n1x(n-k) and nx(n-s) matrices
which are orthogonal complemenis of X and Y respectively,
then (n-k) > (n-s) and

ATYx v

| X'AP ]

Y

. —— (2.4)
|X'x| Y, v,

and

Sy R T T

A v o oan
s




1 1

) =(s+k-n)+tr (P, A” Py A). (2.5)

tr (PXAP A
1 1

Y

The results (2.4) and (2.5) show that we need only consider
the case s>k and n>s+k in proving Theorem 1, | If
n<s+k, then n>(n-s)+(n-k) in which case we consider
the expressions on the right-hand sides of (7..4) and (2.5)
and apply the same proof.

Note 2. If A =P D Q' is the pingular value decomposi-
tion of A, then we can write the left-hand side expressions

of (2.2) and (2.3) as
Xy D, Y,¥, D3 X,|and tr (X, D, YY, D5 X,) (2.6)

choosing X, = P'X(X'%)"% and Y, = Q'Y (v’ so that

Xy Xp = I, and Y; Y, =1, and Dy = Diag(Bl,...,én)

(i.e., a diagonal matrix with 61,...,6n as diagonal
elements). In view of (2.6), we need only prove Theorem 1

with the restri tions X'X =1, Y'Y = I, and A isa

K’
diagonal matrix.

Theorem 2. Let X and Y be nxk and mxs matrices

of ranks k and s respectively with k<s, and B and C
be nxm and mxn matrices such that C =’ Bt (the Moore-
Penrose inverse of B, see Rao, 1973, p. 26). Further,
let 613623_..._>_Gt>0 be the nonzero singular values of B
and t>s. Then

|X'BP, C 4

Y

min(k,t-s)
— < n
[X"X| i=1

0y (2.7)

N . o b e s Lats
o e S e B R R S e
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and

tr (PgBP,C) < I w, if t2s+K
t-s

<s+k-t+ J o, if t<s+k (2.8)
- i=1 *

o 9
where w, = (8, +48, . ,)7/48, & .. 4-

Theorem 3. Let V and W be nxn and mxm non-negative
definite matrices, and X and Y be nxk and mxs mat-
rices such that X'VX and Y'VY are positive definite.
Further, let B and C be nxm and mxn matrices such
that
(a) t = R(B) = R(C) < s
(b) o(W) = p () = o (C:V), o(V) = p(B:V) = o({)
where p(A) stands_. for the rank of matrix A,
(¢) BW+ C and CV+B are symmetric of rank t
and BW' CV'B = B.

It 6‘1a 2 6§_>_. . .363 >0 are the nonzero eigen values of

o0+ L p)
BW'B'V'  and wy = (8;+8 ,,0)°/4 8, 8., then

lX'BY(Y'WY) -1Y|CXI min(k,t—s)

' < n by (2.9)
X" Vx| i=]
and
S S k
tri(X VX) "X BY(YWY) "Y' CX]< ] w, if t>s+k
i=1 B
t-s
< (s+k-t)+ ] w;, if t<s+k.
i=1
(2.10)

it s e mm b s st

o s b i
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Theorem 4. lLet S and R be nxm and mxn matrices
such that t = p(8) = p(R) = p(SR) with t>s>k, and

SR and RS are symmetric, nonnegative definite and idem-

o Sinn s wmwm-dmm&wﬁég

potent matrices. Further let 613 6p>...26, >0 be the

=’ 2 |
nonzero singular values of S and w;={8:+8, ..4) /46,8, 4.9.

Than
' ' -1 min(.k,t-s)
| X sv(ylnsv) Y Rxli I o, (2.11)
| X SRX | ' i=1
and
trl(X'SRX)"IX' SY(Y'RS V) Iy R Y]
K :
< L ow if t>s+k
i=1
t-s
S(s+k-t)+ Yoow, if t<s+ko (2.12)

. i
i=]

Proof. Theorem 4 follows from Theorem 3 by choosing V = SR,

W=RS, B S and C=R.

Theorem 5. Let G and I Dbe symmetric and commuting

matrices such that GH is nonnegative definite and

p(G) = p(H) = p(GH) =t >s>k. TFurther let 61_>_6

’

_>_..._>_<S > 0

2 t

be the nonzero eigen values of H G where H is any g-

- 2
inverse of H, and wi"(61+6t—i+1) /4616t-.-i+1' Then
v .2 ! -1, ,,2 min(k,t-s)
Ix'6"y (v'ouy) v H x| . I o (2.13)

%' G HX| . i=1




tri(X' G

B x'6ly(vennty'nZ

K
< L

if t>k+s
i=1

i

t-
(k+s=-t)+ §
i=1

s
if t<k+s,

fA

U\i

Proof. Theorem 5 follows from Theorem 3 by choosing

V=W=GH, B=G

Theorem 6.

13
2 and c=n2.

Let V and W bhe positive definite, and B

and C be two matrices such that p(B) = p(C) = t(> s),

w~!

C and CV'!B are symmetric and BW

1 1

CV "B = B,

Further let 61362i...16t > 0 be the nonzero singular

values of

-1 L] —1 v ? = '
V1 B(Wl) where W 'wl“l and V vlvl.

Then the inequalities (2?2 7).and (2.10) hold.

3. PROOFS OF MATIN THUORUMS

Proof of Theorem 1. The proof depends on a number of 1

which are

also of independent interest. As observed in

(2.14)

emmas -

sJotes

1 and 2 following the statement of Theorem 1, we can take X

and Y such that X'X = I

D

Lemma 1.

zero eigen values A

matrix of

Y'Y =1, n>s+k and A

4

k’

s " Diag(él,...,én) with all Gi positive.

Let V be an n.n.d. matrix or order n with

124

rank k (<s). Then

as

non-

23..»3 XS >0 and X be an nxk

LA




) k k
sup vzl H A, and sup tr(PyV) = ) A (3.1)
X  |xX'x] i=1 X i=1

Proof. The result (3.1) is an immediate consequence of
the Poincaré Separation Theorem (see Rao, 1979, p. 364)
which states that

My 2 Ai. i=1,...,k(s) (3.2)
where Mo i= 1,2,.:. are the roots of the determinantal
equation

IX'VE- u X'X[=0 (3.3)

and the equality in (3.2) is attained for a suitably

chosen X.

Lemma 2. Let X and Y be nxk and nxs matrices

such that X'X = I, Y'Y =1I_ and s>k. Let Dy be

k’ 8
a positive definite diagonal matrix and Alzx 3...5Ag> 0

be the eigen values of (Y'D Y) (Y'Dy' Y) . Then

k ’
1 t=1 ' Yon 3
|X'Dg ¥ ¥'D xl_g(iglxj)é Ix'Dxx'nel x| (3.4)

and

L

k
-1 . 3 -1
tr(PxD6 I’YD6 ) < (iil)\j) (trPXD(‘PX Dé ) (3.5)

10




Proof of (3.4). Consider

~ |X'p; Y Y'Dy x( = [(DX)' B (DX)]
\ .
where D = D6 and
1 =1 voo=1 '
B=DYY Dy XX'DgYY'D

.which is an n.n.d. matrix of rank k. If 'al,...,ak are

'

the nonzero eigen values of B, then
" .
( o = ]x'n’lw' Ly, (3.6)
.Hence using the result (3.1) of Lemma 1 with X as DX
and V as B we have
1D, vy D3l x 12 < |x'pox) - | X'y D YY' DX, (3.7)
8 é - (I 8 8 )
Now,

Ix'pzlyy'p yy'nytxje [(07'x) ¢ 7l (3.8)

where  C = I."”IYY'DGY‘]"D"1 is an n.n.d. matrix of rank
s and its eigen values are Alz_Azz...3A8>»0. Then, again
applying the result (3.1) to the expression on the right

hand side of (3.8), we have from (3.7)
3 ""1 k
|xn YYD | <|X'DgX| - |X'D X{(n

which proves (3.4).

11
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Proof of (3.5). Consider the singular value

decompositions

"1 U = ' to=1 = (]
D “XXD '1‘1 D1 TZ and DYY D T3 I)2 T4.

where Tl' Tz, Ts and '1‘4 are orthogonal matrices and
Dl and D, are diagonal matrices such that
Dlamagcel,...,ek, 0,...) and DzaDiag(Yl-,...,Ys, 0,...),

where 813...381{ >0 and A PEARREA ) ? 0. Then using a theorem

of von Neumann (see equation (2.11) in Rao, 1979),
-] ' '
tr(PxD6 P,‘.D6 )= tr(D1 'rz T3 02 T4 ‘rl)_<_tr D1 02 (3.9)
and the equality holds ift

IkO} IkO

’1" Ty ™ and T' T, =
2 °3 4 71
0 Al

where A1 and 4, are arbitrary orthogonal matrices.

Now,

T T o,

SR ETPRN PESVIL I 2t o

(3.10)

’)§82=t(P D, P, D31)
FETRE SRS St b St

and Ai = Y?.‘\ i=1,...,8 are the nonzero eigen values

-1 . ,
of PY DGPY D5 Henge using (3.10) in (3.9) we get

12




-] -1 * k i

tr(Py Dy Py Ds™) < (trPy Dy Py Dy7) (izlxi)
which proves (3.5). Thus Lemma 2 is established,
Lemma 3. Let Ay 2252...20 >0 be the eigen values of
Y' Dg vy' Dle where Y is an nxs matrix such that
Y'Yy = I, and diag Dg = ($;,...,6,) with 221 &, positive,
and o, = (8, +8 . 02486 L for i=1,... k(<8),
Then '

K K k k “
My ¢ Mo and A < T oo (3.11)
f=1 i=1 {=1 i=1

Proof. Let

¢(B) = |B'Y' DY B|/ B (Y' 07 v)" B

'n-l

¥(B) = tr(B'y' D, YB (B'(¥'D;' v) By~

] (3.12)

where B is an sxk matrix with p(B) = k<s. Then

applying (3.1)

k k
sup ¢(B) = N ), and sup ¥(B) < ¥ A (3.13)
B i=1 B i=1 :

Next we obsefve that

B'(Y'D';IY)'IB - B'B(B'Y'DEIYB)-IB'B (3.14)

is non-negative definite. (see example 33 on p. 77 of Rao,
1973). Then, substituting the second expression in (3.14) for
the first in (3.12), we get

13




#(B) < | (YBY'D(YB)| |(¥B)' D} (¥B)|/](YB) "' (¥B)|?
¥(B) < tr{(YB)'Dg(¥YB)I(¥B)'¥B1™'(YR)'D;'(YR)I (¥8)' (¥B) 1"}, (3.15)

Now, writing YB = L which is of rank k and applying the

inequalities (1.2) and (1.3) to the right hand sides of (3.15)

we have
k k
¢(B) < T w, and ¥(B) < ) w,
i=1 i=l ~

which in conjunction with (3.13)proves (3.11), since w,

are independent of B.

Combining the results (3.4) and (3.11) we get
' k

( 1 wpb o xxenix )
i‘-‘-l ‘ s

{A

‘o ."'1
1X'DgYY' D X|

' -1
tr(X DGYY'DG X)

{A

¥ , NS .
( §l“wi)”(trx DBXX Dé X)v. (3.16)
i=

A further application of (1.2) and (1.3) to the right hand

side expressions of (3.16) proves Theorcem 1.

Proof of Theorem 2. Consider the singular value decomposi-

tion, B = A] D5 WP where Ai A, = lt for i=1,2 and
D6 = Diag(ﬁl,...,ét) with all 8 positive. Then

= *a =1, = X vy = : = .
C=208 A2 D6 Al. Let Xo A, X and Yo Ao Y so that

X'X-—Xé X, and Y'Y-—Yé Y are n.n.d. matrices and so also

S N v
p - YO(Y Y) Y() .H’\(‘ px - n

X X)X,
o o [#]

Y 0(

11
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‘Then it is easily seen that

' 2 ' -1 2
[X' B Py CX| 1%y Dy pYO DX |
Tz = 2 (3.17)
%3 %o %ol
and
. -1,
tr(PxBPYC) N tr(Pxo 06 PYO DG ). (3.18)

\
Now using Theorem 1 on the right hand side expressions of

(3.17) and (3.18), we get the results (2.7) and (2.8) of

Theorem 2,

Proof of Theorem 3. Let V and W be of ranks ny and

m) respectively and write V=V, Vi and W=W, W, where

V1 and Wl are n xnl and n\XnH matrices of ranks ny

and m, respectively. Let

' -1 . ' -1 1 -1, 1 -1
Bl = (Vl Vl) Vl BWI(WI Wl) and Cl = (W] Wl) Wl CVI(Vlvl) .

Then, under the given conditions. it is easy to verify that

t

+ U . -
€y = B, and taking X = V) X and v, =W

Y,

XBY(Y'WY) ly'cx = X\ By Y (¥ ¥k v, c X (3.19)

and X'VX = X(') X,+ Now applying Theorem 2 to the right-
hand side expression of (3.19), we get the vesults of

Theorem 3.
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